ANSYS/LS-Dyna Customization in Workbench Using ACT

Steven Hale
Senior Engineering Manager
CAE Associates, Inc.

June 13, 2013

© 2013 CAE Associates
CAE Associates

- CAE Associates is an engineering services firm specializing in all aspects of engineering simulation.
 - Incorporated in 1981 as an engineering consulting firm, specializing in finite element analysis.
 - One of the original 4 ANSYS Channel Partners, since 1985.
 - Built upon these foundations to become a quality provider of engineering simulation products and services to hundreds of corporations, both large and small.
CAE Associates

- 3 Major Areas of Focus:
 - Engineering Consulting
 - Provide solutions to complex structural, thermal, fluid, and multiphysics challenges.
 - Sales and Technical Support of the ANSYS Suite of Simulation Software
 - CT, LI, Northern NJ, NY Metro, Western MA
 - ANSYS FEA and CFD Training
 - Application specific
 - Coaching and mentoring
Areas of Expertise

- Structural Analysis
 - Composites
 - Fatigue
 - Implicit and Explicit Dynamics
- Thermal Analysis
- CFD
 - Aerodynamics
 - Turbo machinery, Propulsion
 - Coupled Thermal-Flow
 - Fluid-Structure Interaction
 - Chemical reacting flows
- ANSYS Customization
Our Approach

- Maximize the value of simulation to our clients by ensuring they get the best combination of engineering software and services to achieve their objectives.

- Provide the highest level of expertise every step of the way to ensure a fast, successful implementation, as well as ongoing support.
Introduction

- The Workbench/LS-Dyna ACT Extension is a tool that adds considerable functionality and usability to the existing Workbench/LS-Dyna tool: Explicit Dynamics (LS-Dyna Export).
 - Combines the power of the LS-DYNA solver with the ease-of-use of the ANSYS Workbench environment.
 - LS-Dyna is a very popular commercial explicit dynamics solver.
 - Very robust and fast for solving high-energy transient events.
 - Applications include impact, crash, drop tests, manufacturing, buckling, etc.
Outline

- What is ACT and what can it do?
- ACT implementation, development, and licensing
- ACT extensions available for download
- Workbench/LS-Dyna ACT extension and demo
What is ACT?

- Since ANSYS Workbench is a general purpose FE element tool, it does not always provide the most direct method for analyzing specific situations.

- ACT (Application Customization Toolkit) is a new capability in WB that allows you to add custom features to the Workbench Mechanical interface.
 - Custom features can be specific to your industry or to a particular model.
 - No need to compile external code or link with ANSYS libraries.

- ACT extensions can relieve some of the pain and difficulties in specific modeling areas
 - Eliminate the need for command blocks.
 - Automate certain hand calculations.
 - Easily incorporate previously-developed APDL macros into WB Mechanical.
What Can ACT Do?

- ACT customizations can include things like:
 - Specialized loads
 - Examples: Acoustic pressure, Rigid body force (LS-Dyna)
 - Element types and options not directly available in WB
 - Examples: Acoustic elements, LS-Dyna shell/solid formulations
 - Specialized post-processing
 - Examples: Acoustic pressure, Energy time-history results (LS-Dyna)
 - FE model information and access
 - Examples: Node and element #s and display
 - Use of MAPDL macros
 - Example: Menus that call and send input parameters to a custom MAPDL convection load macro
 - Use of 3rd party solver
 - Example: LS-Dyna
ACT Implementation

- ACT customizations can show up as new tool bar buttons

- Or as new menus
ACT Implementation

- These custom buttons function just like regular Workbench tools
 - Items are added to the tree and settings can be modified in the details pane.
 - Scoping is the same, specifying load direction is the same, etc.
 - No need to learn a new methodology.
ACT Development

- ACT Extension files are created by combining XML files and Python Scripts.

 - XML files define the menus, buttons, icons, and details information.

 - Python scripts perform the operations in Mechanical
 - Main function – Extract the data from the user-entered details and write items to the input file (ANSYS DS.dat file or LS-Dyna .k file).
ACT Licensing

- To use ACT extensions no additional licensing is required!
 - To install a compiled ACT extension file simply go to Extensions > Install Extension and browse for the .WBEX file
 - To use the extension in a particular project, go to Extensions > Manage Extensions and check off the extensions to use.

- To develop and compile ACT extensions an additional license (ANSYS SDK license) is required.
There are many pre-developed free ACT extensions available for your use. Some examples include:

- **3D_Surface_Effect Extension R145 v1**
 Create a 3D surface effect using SURF154 elements

- **Acoustics Extension R145 v6**
 Expose 3D acoustics solver capabilities

- **BeamEndRelease Extension R145 v1**
 Expose the end release feature for beam elements and enable advanced graphic post-processing for beam results

- **Convection Extension R145 v1**
 Expose convection with pilot node capability

- **FE Info Extension R145 v4**
 Expose node and element related information

- **FSI Transient R145 v1**
 Map temperature and pressure loads (from a CFD calculation) to a multi-step Mechanical analysis for transient one-way FSI

- **MatChange R145 v1**
 Change material ID to user specified value for the selected bodies

- **Morphing2D Extension R145 v1**
 Perform a set of morphing capabilities on 2D models

- **Non Linear Results Info Extension R145 v1**
 Enable tracking for non-linear solutions (contact & Newton-Raphson residuals)

- **Piezo Extension R145 v2**
 Expose piezo-electric solver capabilities

- **Submodeling Extension R145 v1**
 Sub-modeling for shell-to-solid (R14.5 native implementation already supports solid-to-solid sub-modeling)

- **Workbench LS-DYNA R145 v2**
 Fully integrated access to ANSYS LS-DYNA with all the power of Workbench through the Mechanical GUI
Current State of LS-Dyna in Workbench

- Explicit Dynamics (LS-Dyna Export) utility
 - Limited access to LS-Dyna functionality
 - Cannot solve in Mechanical
 - Cannot post-process in Mechanical
 - Other limitations:
 - Limited shell and solid section types
 - No eroding contact
 - Only global damping and hourglass controls
 - Cannot apply different values/types to different parts
 - Cannot create point masses, springs, or dampers
 - Cannot apply certain load types to rigid bodies
 - Cannot track contact or reaction forces
Workbench/LS-Dyna ACT Extension

- Workbench LS-DYNA is an ACT-developed user environment that adds considerable functionality and usability.
 - Used for preprocessing, solving, and post-processing LS-DYNA models.
 - New at Version 14.5.
 - Requires an ANSYS LS-DYNA license.
Main Features

- New functionality in some existing menus plus ACT add-on menus

LS-Dyna ACT toolbar

- Rigid body loads and constraints
- Bonded (Tied), frictional, eroding, and single-surface contacts
- Point masses, beam connectors, springs, and dampers
- Access additional LS-Dyna solid and shell formulations
- Access most LS-Dyna hourglass controls
- Result tracking for high-frequency output at specific nodes and for contact forces
- Comprehensive post processing
 - Do not need to learn LS-PrePost
Demo: Pliers Drop Test

- Pliers dropped from 20 ft. onto a hard surface
 - Goal: Obtain max. tensile stress history in the bottom clamp
 - Impact velocity = 430 in/s
 - Can model all parts as rigid except for the bottom clamp
 - Can use bonded contact as shown and frictional contact at all other joints
Demo: Pliers Drop Test

- Assign:
 - Impact velocity
 - Constrain impact surface
 - Rigid body constraint
 - Insert a body contact tracker
 - Allows for graphing contact/impact forces
 - Analysis settings
 - Transient time (0.01 seconds)
 - Mass scaling to speed up the run
 - Number of CPUs
 - Number of output time pts to write
Demo: Pliers Drop Test

- Instructions
 - Change all bodies except for “Clamp bot” to rigid
 - Connections
 - Delete the bonded contacts at all locations except “Bonded – Clamp top to Arm top”
 - Add 2 manual bonded contacts between the top of the CenterLink and Arm top

- Keep Body Interaction contact active (and frictional)
 - Set the friction coefficient to 0.2
Demo: Pliers Drop Test

- **Mesh**
 - Physics Preference = Explicit
 - Advanced Size Function = Off
 - Element Size = 0.04 in.

- **Initial Conditions**
 - Velocity (430 in/s normal to the floor surface)

- **Analysis Settings:**
 - End Time = 0.01 sec.
 - Automatic Mass Scaling = Yes
 - Time step Size = 1.e-7
 - Number of CPUs = 2
 - Solver Controls:
 - Unit System = Bin
 - Output Controls:
 - Calculate Results At = Equally Spaced Points
 - Value = 80
 - Time History Output Controls:
 - Calculate Results At = Equally Spaced Points
 - Value = 200
Demo: Pliers Drop Test

- Rigid Body Constraint
 - Apply to the floor (surface body)

- Other items not required for this demo but may want to show:
 - Analysis Settings: Many different hourglass controls, Damping
 - Can insert pressure, force, displacement, velocity, or acceleration vs. time

- Solution:
 - Insert Total Deformation
 - Maximum Principal Stress scoped to the bottom clamp
 - ASCII > Global Data (Add Kinetic and Internal Energy)
 - Use Worksheet to plot
 - ASCII > Contact Force
 - Contact = Body Interaction
 - Scope to the floor body
Demo: Pliers Drop Test

- Maximum principal stress in the bottom clamp
Demo: Pliers Drop Test
Conclusions

- The Workbench/LS-Dyna ACT extension allows you to rapidly set up models in Mechanical for solving high-energy dynamic analyses in LS-Dyna.
 - Provides much more functionality than the current Workbench/LS-Dyna tool.
 - Allows post-processing in Mechanical (or LS-Prepost if you prefer).
 - Can leverage all of the power of Workbench for geometry processing, parameterization, meshing, and load application.